
Managing Urban Lakes and Ponds Special Challenges Facing Lake Managers

Stephen J. Souza, Ph.D.
Clean Waters Consulting, LLC
Ringoes, New Jersey
SJSouza.CWC@gmail.com

My little piece of boyhood heaven

An "Oasis" In a Land of Concrete

Urban lakes provide an array of services and functions... some of which can be conflicting –

- Contact and non-contact water-based recreation.
- Aesthetic backdrop for active/passive land-based recreation.
- Living classroom
- Stormwater and flood management
- Wastewater management

These uses conflict with beneficial uses

Challenging Environmental Conditions

Difficult to consistently meet expected community services and functions due to:

- Inconsistent hydrology rely largely on stormwater
- Poor quality of inflow, high concentrations of nutrietns, sediments, bacteria and pollutants
- Subject to sediment infilling
- Compromised by invasive aquatic plants and algae

Restoration Challenges

- Often relegated to a lower tier relative to large, public recreational lakes... as a result
 - Less directed funding
 - Less attention
 - Less protection
- Considered part of stormwater / flood management system rather than recreational waterbody
- Impacted by "past sins" tied to past development activities and practices... history of social injustice.

Deal Lake, NJ

- Largest of NJ's coastal lakes.
- Once an estuary, created in late 1800s by erecting of a dam.
- Still receives some inflow from ocean.
- 155 acres, 27 miles of shoreline.
- Abutted by 7 towns.

Historic Postcards Early 1900s

An Urban Lake In Trouble

WQ impairments typical of any lake located within densely urbanized watershed.

- Highly eutrophic, subject to HABs and invasive aquatic plants.
- Very turbid due to sediment influx from eroded streams.
- Large amounts of floatables and particulates enters during storms.

WQ and ecological problems directly linked to inadequate stormwater management.

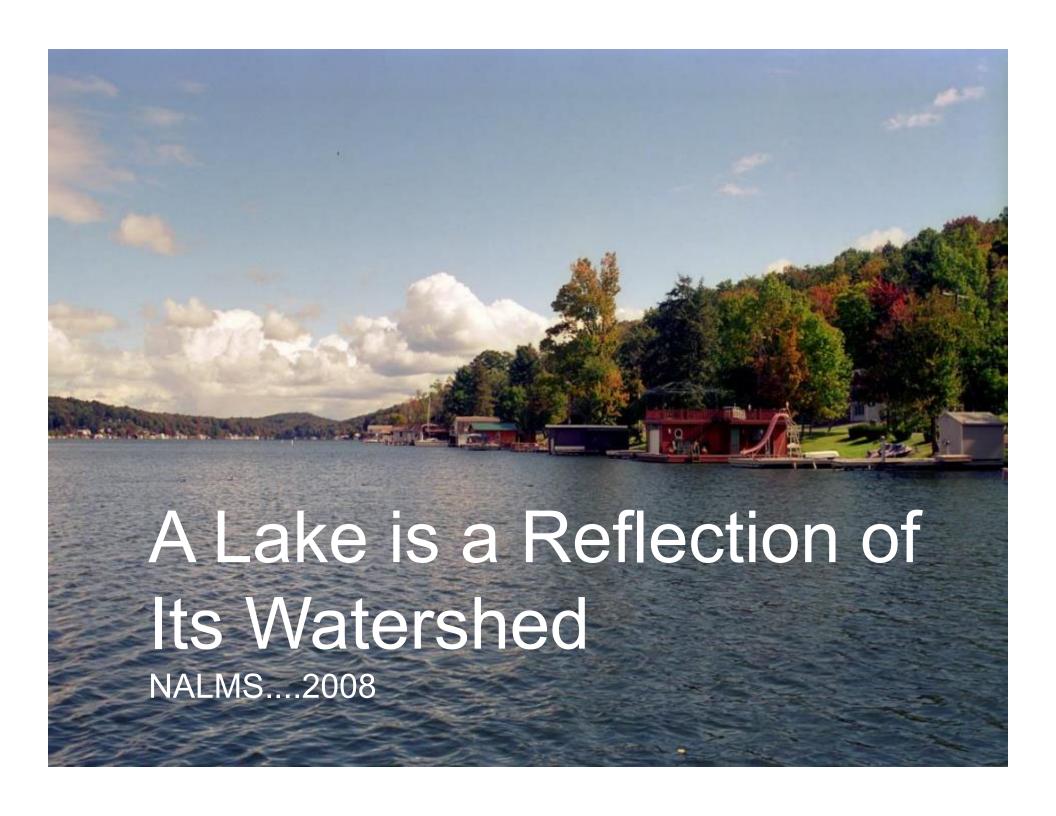
General Land Use/Land Cover Categories in the Deal Lake Watershed.

LU/LC Category	Acres within the Deal Lake Watershed	Percentage of total watershed area
High/Medium Density Residential	1,843.78	41.85%
Commercial	493.96	11.21%
Forest	483.65	10.98%
Wetlands	374.15	8 . 49%
Low Density/ Rural Residential	355.01	8.06%
Other Lands	286.77	19%
Total Watershed Area	4,406.16	100%

TP Loading by Subwatershed

Subwatershed	Total Acreage	% of total watershed area	TP Load (lbs /year)	% TP load
1-Main Lake Basin	2,224.13	50.47%	472.36	47.28%
2-Harvey Brook	971.53	22.05%	203.78	20.40%
3-Lollypop Pond	204.14	4.63%	58.34	5.84%
4-Colonial Terrace	149.82	3.41%	53.01	5.31%
5-Tributary	464.88	10.55%	139.46	13.96%
6-Hollow Brook	391.66	8.89%	72.03	7.21%
Total Watershed	4,406.16	100.00%	998.98	100.00%

TSS Loading by Subwatershed


Subwatershed	Total Acreage	% of total watershed area	TSS Load (lbs /year)	% TSS load
1-Main Lake Basin	2,224.13	50.47%	642,547.92	47.04%
2-Harvey Brook	971.53	22.05%	343,361.98	25.14%
3-Lollypop Pond	204.14	4.63%	62,183.55	4.55%
4-Colonial Terrace	149.82	3.41%	65,269.47	4.78%
5-Tributary	464.88	10.55%	147,498.00	10.80%
6-Hollow Brook	391.66	8.89%	105,133.84	7.69%
Total Watershed	4,406.16	100.00%	1,365,994.76	100.00%

Summary of Problems As Per Monitoring Data

- Elevated TP concentrations (mean > 0.07 mg/l
- Algae blooms and HABs
- Floatable and trash
- High fecal coliform
- Deeply incised stream channels
- Large inn-stream sediment bed loads
- Re-suspension of fine lake sediments during storms, creating high turbidity conditions within lake

Urban Lakes Require Focus On Watershed Management

- Must intercept and treat stormwater to decrease impacts of eutrophication.
- Decreased phosphorus loading = less productivity and HAB prevention
- Decreased sediment and floatable loading = improved aesthetics

Stormwater Management Critical Part of Urban Lake Restoration

- Proactive... address root cause of lake impairments.
- Reduces pollutant and sediment loading.
- Reduces runoff volume and flow thus decreasing stream bed and bank erosion.
- Corrects "past sins" of inadequate stormwater management linked to historic land development.
- Protects lake from future development driven stormwater problems.
- Protects lake restoration efforts and gains.

Green Infrastructure and Urban Lake Management

- A holistic means of managing stormwater runoff.
- Treats stormwater as a resource not as a waste.
- Can achieve
 - Peak flow mitigation
 - Reduces runoff volume
 - Increases recharge
 - Excellent sediment and phosphorus removal
- Major part of managing urban waterbodies

EPA Definition of Green Infrastructure

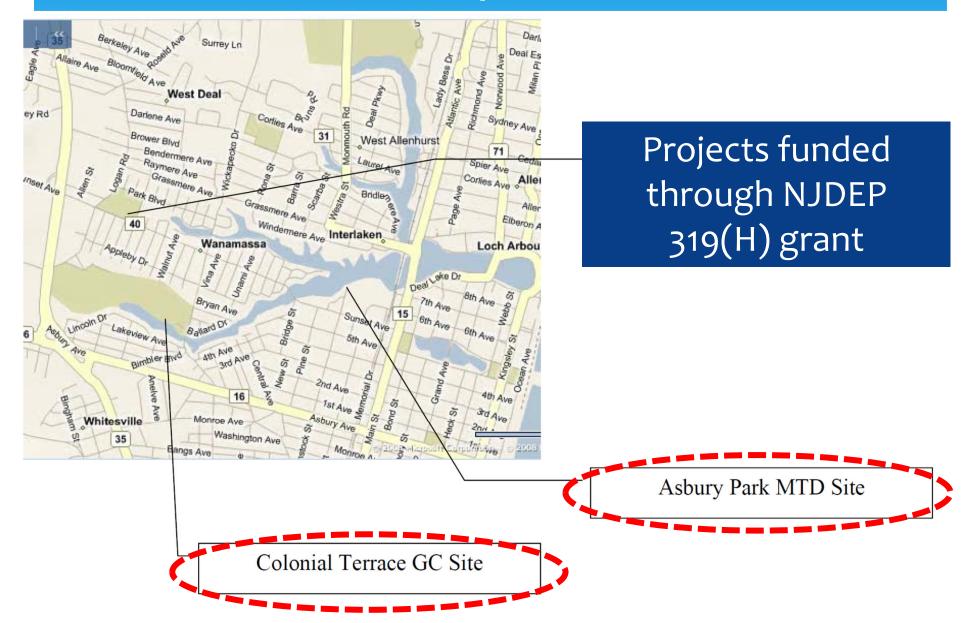
- An adaptable term...
- Stormwater management systems that mimic nature by soaking up and storing water.
- Array of products, technologies, and practices that use natural systems or engineered systems that mimic natural processes.
- Use of vegetation, soils, and natural processes to infiltrate, evapotranspirate, and/or recycle runoff.
- Create healthier environments.

Green Infrastructure Its Role in the Restoration of Deal Lake

- Goal address the causes of eutrophication and sediment infilling.
- Use GI SW techniques that are suitable for urban setting...
 - Work with limited amount of "available land",
 - Manage high rates and volumes of runoff,
 - Ensure accessibility for maintenance,
 - Replicable... use techniques that can be implemented throughout watershed.

Reduce Phosphorus Loading

- Address problem at its source Source Control Strategies
 - Pet waste management (pick-up after your pet)
 - Wise use of fertilizer
 - Proper lawn waste management
 - Maintain/restore riparian vegetation
 - Control Canada geese (urban lakes often impacted by geese)
- Address stormwater runoff Delivery Control Strategies
 - Reduce runoff volume and amount of SW discharged to lake
 - Infiltrate run off when/where possible... decreases rate and volume of runoff and the transport of pollutants
 - Attenuate phosphorus using Green Infrastructure SW techniques



Reduce Sediment and Floatable Loading

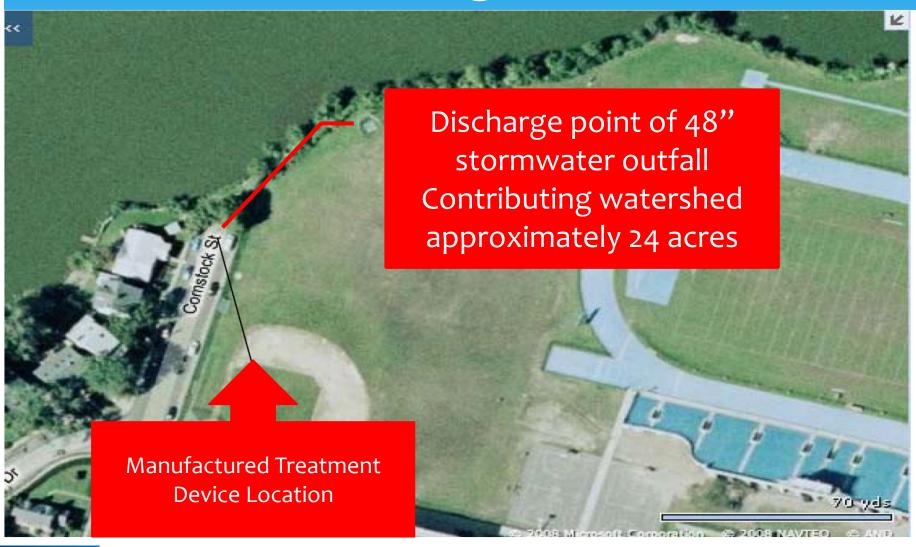
- Decrease volume of runoff and mitigate peak flow rates
 ... less steam scour and less sediment loading.
- Intercept and pre-treat runoff... decrease sediment and floatable loading
- Repair storm scoured and eroded stream banks.
- Prevent/reduce egregious clearing of lake shore vegetation.
- Restore riparian and nearshore vegetation and stabilize eroded lakeshore areas with native vegetation... also functions as a "filter" to passively treat overland runoff.

Phase 1 of Implementation

Colonial Terrace Golf Course

Bio-infiltration swale

- Slight narrowing of fairway
- Infiltration bunker collects and treats runoff from fairway and cart path.


Deal Lake Bio-Infiltration Swale

Asbury Park High School Site

Deal Lake - MTD Installation

Asbury Park Boat Launch Rain Garden

Project goals:

- Stabilize eroded banks
- Passive mgmt. of overland runoff
- Easily replicable
- Low cost

Lake-Side Vegetated Buffers Riparian Area Restoration

Project Cost \$25,000 (600 ft)

Resulting Benefits

- The STEPL model predicted reduction efficiencies of 69% for TP, 56% for TN, and 89% for TSS
- Colonial Terrace Basins no measurable stormwater discharge from basins... working as designed to infiltrate collected runoff
- Comstock Avenue MTD data collected during three storms, measurable reductions in TP (53%), SRP (50%), E. coli (30%) and TSS (67%) realized.
- Comstock Basin additional benefit 2-4 tons of debris trapped and removed (mostly floatable) per quarter!

More Stormwater Management For Deal Lake... Phase 2 Implementation

- Additional MTDs at 2 major stormwater outfalls (48" diameter SW pipes).
- Street-side Tree Boxes (Filtera units) at 4-6 locations.
- Vegetated parking lot swales and rain gardens
- Floating wetland islands.

Funding through NJDEP via 319(h) grant \$380,000

Summary

- Urban lakes are "expected" to meet a wide array of ecological and societal services and functions....some of which are conflicting.
- These lake ecosystems under constant stress.
- Most problems, including eutrophication, directly linked to inadequate or improper stormwater management.
- Green infrastructure stormwater management techniques play major role in urban lake restoration.

Summary

Green infrastructure stormwater management...

- Highly adaptive.
- High removal efficiency for sediment and phosphorus.
- Can be implemented within "tight areas" with limited "free/available" land.
- Can work with existing pipe network.
- Makes up for "past sins".
- Social justice benefits.

Thank You Stephen J. Souza, Ph.D.

Clean Waters Consulting, LLC Ringoes, NJ 08551 SJSouza.CWC@gmail.com

CWC